Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(2): 106049, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818282

RESUMEN

The mitogen-activated protein kinase (MAPK) cascade is involved in several signal transduction processes in eukaryotes. Here, we report a mechanistic function of MAP kinase kinase kinase 20 (MKKK20) in light signal transduction pathways. We show that MKKK20 acts as a negative regulator of photomorphogenic growth at various wavelengths of light. MKKK20 not only regulates the expression of light signaling pathway regulatory genes but also gets regulated by the same pathway genes. The atmyc2 mkkk20 double mutant analysis shows that MYC2 works downstream to MKKK20 in the regulation of photomorphogenic growth. MYC2 directly binds to the promoter of MKKK20 to modulate its expression. The protein-protein interaction study indicates that MKKK20 physically interacts with MYC2, and this interaction likely suppresses the MYC2-mediated promotion of MKKK20 expression. Further, the protein phosphorylation studies demonstrate that MKKK20 works as the upstream kinase of MKK3-MPK6-MYC2 module in photomorphogenesis.

2.
Plant Sci ; 325: 111484, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36195119

RESUMEN

Sugar as a signaling molecule has attracted lots of attention. Even though several kinases have been shown to play a crucial role in the sugar signaling and response to exogenous D-glucose (Glc), the information on the involvement of MAP kinase cascade in sugar signaling has remain largely unexplored. In this report we demonstrate that MAP kinase signaling is essential for sensitivity to higher concentrations of D-Glc in Arabidopsis. We found that D-Glc activates MAP kinases, MPK3 and MPK6 in a concentration and time-dependent manner. The mutants of mpk3 and mpk6 display hyposensitivity to 6% D-Glc during seed germination, cotyledon greening and root growth. Interestingly, the altered sensitivity to increased D-Glc is severely enhanced by addition of 1% Sucrose in the media. Our study also deciphered the role of one of the Glc sensor proteins, RGS1 that interacts and gets phosphorylated at its C-terminal domain by MPK3 and MPK6. Overall our study provides a new insight on the involvement of MAP kinases in association with G-proteins that might regulate sugar signaling and sugar responsive growth and development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas RGS , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
3.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409147

RESUMEN

MicroRNAs (miRNAs) are one of the prime regulators of gene expression. The recruitment of hyponastic leaves 1 (HYL1), a double-stranded RNA binding protein also termed as DRB1, to the microprocessor complex is crucial for accurate primary-miRNA (pri-miRNA) processing and the accumulation of mature miRNA in Arabidopsis thaliana. In the present study, we investigated the role of the MAP kinase-mediated phosphorylation of AtHYL1 and its sub-cellular activity. AtMPK3 specifically phosphorylates AtHYL1 at the evolutionarily conserved serine-42 present at the N-terminal regions and plays an important role in its nuclear-cytosolic shuttling. Additionally, we identified that AtHYL1 is cleaved by trypsin-like proteases into an N-terminal fragment, which renders its subcellular activities. We, for the first time, report that the dimerization of AtHYL1 not only takes place in the nucleus, but also in the cytosol, and the C-terminal of AtHYL1 has a role in regulating its stability, as well as its subcellular localization. AtHYL1 is hyper-phosphorylated in mpk3 mutants, leading to higher stability and reduced degradation. Our data show that AtMPK3 is a negative regulator of AtHYL1 protein stability and that the AtMPK3-induced phosphorylation of AtHYL1 leads to its protein degradation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación , Estabilidad Proteica , Procesamiento Postranscripcional del ARN
4.
Plant Mol Biol ; 107(1-2): 117-127, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34490593

RESUMEN

KEY MESSAGE: Cross-talk between light and ABA signaling is mediated by physical interaction between HY5 and ABI5 Arabidopsis. Plants undergo numerous transitions during their life-cycle and have developed a very complex network of signaling to integrate information from their surroundings to effectively survive in the ever-changing environment. Light signaling is one of the crucial factors that govern the plant growth and development from the very first step of that is from seedling germination to the flowering. Similarly, Abscisic acid (ABA) signaling transduces the signals from external unfavorable condition to the internal developmental pathways and is crucial for regulation of seed maturation, dormancy germination and early seedling development. These two fundamental factors coordinately regulate plant wellbeing, but the underlying molecular mechanisms that drive this regulation are poorly understood. Here, we identified that two bZIP transcription factors, ELONGATED HYPOCOTYLE 5 (HY5), a positive regulator of light signaling and ABA-INSENSITIVE 5 (ABI5), a positive regulator of ABA signaling interacts and integrates the two pathways together. Our phenotypic data suggest that ABI5 may act as a negative regulator during photomorphogenesis in contrast, HY5 acts as a positive regulator of ABA signaling in an ABA dependent manner. We further showed that over-expression of HY5 leads to ABA-hypersensitive phenotype and late flowering phenotype. Taken together, our data provides key insights regarding the mechanism of interaction between ABI5-HY5 that fine tunes the stress and developmental response in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Luz , Transducción de Señal , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Flores/fisiología , Germinación/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Modelos Biológicos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Transducción de Señal/efectos de la radiación
5.
Planta ; 253(6): 131, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34057637

RESUMEN

MAIN CONCLUSION: A dual-specificity phosphatase MKP1 negatively regulates the activity of MPK6 by dephosphorylating it and acts as a positive regulator of blue light (BL)-mediated photomorphogenic development in Arabidopsis. Reversible phosphorylation of proteins is one of the major post-translational modifications in nearly all signaling pathways in plants. MAP kinase phosphatases are very crucial in the regulation of MAPKs as they dephosphorylate both threonine (Thr) and tyrosine (Tyr) residues within the T-X-Y motif of active MAPKs. Therefore, to gain insight of involvement of MAP kinase phosphatases in the regulation of light signaling, we searched for the potential phosphatase which may regulate the function of MPK6, a negative regulator of blue light (BL)-mediated photomorphogenic development. We report here the identification of a dual-specificity phosphatase, MAP kinase phosphatase 1 (MKP1) as a positive regulator of BL-mediated seedling development. Overexpression of MKP1 enhances the BL-induced inhibition of hypocotyl elongation and displays more opened cotyledons. We also show that MKP1OE accumulates more pigments and positively affects the expression of downstream light-related genes in response to BL. In vitro and in vivo evidences also demonstrate that MKP1 not only interacts with but also dephosphorylates MPK6 in BL. In addition, MKP1 regulates stability as well as activity of MPK6 upon BL. Taken together our study highlights the important role of phosphatases in the regulation of a signaling pathway and identifies the role of MKP1 in the negative regulation of MPK6 activity leading to a change in BL-induced photomorphogenic responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Tirosina Fosfatasas/genética , Plantones/genética
6.
FEBS J ; 287(12): 2560-2576, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31782895

RESUMEN

MYC2, a bHLH TF, acts as regulatory hub within several signaling pathways by integration of various endogenous and exogenous signals which shape plant growth and development. However, its involvement in salt stress regulation is still elusive. This study has deciphered a novel role of MYC2 in imparting salt stress intolerance by regulating delta1 -pyrroline-5-carboxylate synthase1 (P5CS1) gene and hence proline synthesis. P5CS1 is a rate-limiting enzyme in the biosynthesis of proline. Y-1-H and EMSA studies confirmed the binding of MYC2 with the 5'UTR region of P5CS1. Transcript and biochemical studies have revealed MYC2 as a negative regulator of proline biosynthesis. Proline is necessary for imparting tolerance toward abiotic stress; however, its overaccumulation is toxic for the plants. Hence, studying the regulation of proline biosynthesis is requisite to understand the mechanism of stress tolerance. We have also studied that MYC2 is regulated by mitogen-activated protein kinase (MAPK) cascade mitogen-activated protein kinase kinase 3-MPK6 and vice versa. Altogether, this study demonstrates salt stress-mediated activation of MYC2 by MAPK cascade, regulating proline biosynthesis and thus salt stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Prolina/biosíntesis , Cloruro de Sodio/metabolismo , Estrés Fisiológico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Prolina/química , Salinidad , Tolerancia a la Sal
7.
Plant Physiol Biochem ; 129: 238-243, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29902676

RESUMEN

Signalling pathways play vital roles as determinants of almost all the molecular processes inside a eukaryotic cell. They are more often considered to be the link between extracellular and intracellular environmental cues. Gene silencing pathways have emerged to be involved in regulation of stress responses and developmental processes. However, very little is known about the crosstalk between signalling and silencing pathways and their influence on each other. The present work describes the effects of general protein kinase inhibitors and specific mitogen activated protein kinase (MAPK) pathway inhibitors on the components of microRNA pathway in rice. The kinase inhibitors significantly reduced the activities of miRNA biogenesis complex and changed the transcript expression of miRNA pathway factors. This study suggests a possible regulation of microRNA machinery by plant kinases and MAP kinases in particular.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Oryza/genética , Proteínas de Plantas/genética , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , MicroARNs/metabolismo , Oryza/metabolismo , Fosforilación , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa
8.
Front Plant Sci ; 9: 12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29459874

RESUMEN

Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...